ar X iv : m at h / 05 11 35 2 v 3 [ m at h . D S ] 2 2 M ar 2 00 7 SINGULAR - HYPERBOLIC ATTRACTORS ARE CHAOTIC
نویسندگان
چکیده
We prove that a singular-hyperbolic attractor of a 3-dimensional flow is chaotic, in two strong different senses. Firstly, the flow is expansive: if two points remain close for all times, possibly with time reparametrization, then their orbits coincide. Secondly, there exists a physical (or Sinai-Ruelle-Bowen) measure supported on the attractor whose ergodic basin covers a full Lebesgue (volume) measure subset of the topological basin of attraction. Moreover this measure has absolutely continuous conditional measures along the center-unstable direction, is a u-Gibbs state and an equilibrium state for the logarithm of the Jacobian of the time one map of the flow along the strong-unstable direction. This extends to the class of singular-hyperbolic attractors the main elements of the ergodic theory of uniformly hyperbolic (or Axiom A) attractors for flows. In particular these results can be applied (i) to the flow defined by the Lorenz equations, (ii) to the geometric Lorenz flows, (iii) to the attractors appearing in the unfolding of certain resonant double homoclinic loops, (iv) in the unfolding of certain singular cycles and (v) in some geometrical models which are singular-hyperbolic but of a different topological type from the geometric Lorenz models. In all these cases the results show that these attractors are expansive and have physical measures which are u-Gibbs states.
منابع مشابه
ar X iv : m at h / 05 11 35 2 v 2 [ m at h . D S ] 1 A ug 2 00 6 SINGULAR - HYPERBOLIC ATTRACTORS ARE CHAOTIC
We prove that a singular-hyperbolic attractor of a 3-dimensional flow is chaotic, in two strong different senses. Firstly, the flow is expansive: if two points remain close for all times, possibly with time reparametrization, then their orbits coincide. Secondly, there exists a physical (or Sinai-Ruelle-Bowen) measure supported on the attractor whose ergodic basin covers a full Lebesgue (volume...
متن کاملar X iv : h ep - t h / 03 05 03 7 v 2 3 0 M ay 2 00 3 FORMS ON VECTOR BUNDLES OVER COMPACT REAL HYPERBOLIC MANIFOLDS
We study gauge theories based on abelian p− forms on real compact hyperbolic manifolds. The tensor kernel trace formula and the spectral functions associated with free generalized gauge fields are analyzed.
متن کاملar X iv : m at h / 04 11 35 1 v 2 [ m at h . A T ] 1 7 N ov 2 00 4 POINCARÉ SUBMERSIONS
We prove two kinds of fibering theorems for maps X → P , where X and P are Poincaré spaces. The special case of P = S yields a Poincaré duality analogue of the fibering theorem of Browder and Levine.
متن کاملar X iv : m at h / 06 01 33 8 v 2 [ m at h . D S ] 1 3 A pr 2 00 6 HYPERBOLIC OUTER BILLIARDS : A FIRST EXAMPLE
We present the first example of a hyperbolic outer billiard. More precisely we construct a one parameter family of examples which in some sense correspond to the Bunimovich billiards.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005